WJEC Chemistry A-level

3.9: Acid-base Equilibria

Practice Questions

Wales Specification

1. (a) Write an expression for the ionic product of water, K_w , giving its units, if any. [2] Kw= Units (i) The value for $K_{\rm w}$ at 298 K is 1.0 × 10⁻¹⁴. Explain why the pH of pure water at this (b) temperature has a value of 7. [2] (ii) Calculate the pH of the final solution if 10 cm³ of 0.10 mol dm⁻³ hydrochloric acid is added to 990 cm3 of pure water. [2] pH = (c) Calculate the pH of a solution which is 0.010 mol dm⁻³ with respect to ethanoic acid and 0.020 mol dm⁻³ with respect to sodium ethanoate at 298 K. [3] [K_a for ethanoic acid = 1.78×10^{-5} mol dm⁻³ at 298 K]

pH =

	(Total 2)
	[1]
(b) Suggest a pH value for vinegar.	
	[1]
(a) State what is meant by an <i>acid</i> .	F41
2. Vinegar is a dilute solution of a weak acid.	

Read the passage below and then answer the questions in the spaces provided.

Acids Through The Ages

The ancient Greeks started to classify materials as salt-tasting, sweet-tasting, sour-tasting and bitter-tasting. In this classification acids were those considered to be sour-tasting – the name comes from the Latin *acere*.

Taste continued to be an important consideration — even today many people would think of 5 the sour taste of a lemon as being typical of an acid. However it was found that, as well as taste, these compounds had other properties in common. The dye litmus had been extracted from lichens and it was found that acids changed the colour of this to red. They also corroded metals.

Many acids were identified - citric acid could be extracted from citrus fruit and methanoic 10 acid could be extracted, by distillation, from red ants. Methanoic acid used to be called formic acid since the biological term for an ant is formica.

The modern classification of acids is based on the theory suggested by Lowry and Brønsted although more recent classifications, based on electron pair donation, have been suggested by Lewis.

15 Using the Lowry-Brønsted classification both citric acid and methanoic acid are described as being weak. For methanoic acid, HCOOH, the value of the acid dissociation constant, K_a, is 1.75 × 10⁻⁴ mol dm⁻³.

Acids have a wide variety of uses in modern chemistry. They can, for example, be used as catalysts in hydrolysis reactions and work is currently being done to investigate the possibility 20 of obtaining biofuels by the hydrolysis of farm waste such as straw. In some situations however acids can destroy catalytic effects. The tertiary structure and therefore the shape of the active sites of some enzyme catalysts can be maintained by ionic attractions. This could arise, for example, when the enzyme involves the amino acids lysine and aspartic acid. The NH₂ on the lysine can be protonated to give a positive ion, whilst the COOH can be deprotonated to give 25 a negative ion. Attraction between oppositely charged ions holds the shape but if the pH is altered and one of the charges is lost the shape can change and the enzyme becomes denatured.

The possible alteration of the shapes of molecules in biological systems means that it is important that the pH of, for example shampoos, is maintained within a small range. For best results shampoo should stay at a pH just below 7.

- End of passage -

(a) Sta	ite wha	at is meant by a Lowry-Brønsted acid. (line 12)
(b) Def	fine ph	ł.
acid w	as stro lower	d Peter were discussing acids and bases. David said that you could decide whether an ong or weak by measuring the pH of the acid solution. He said that the strong acid would pH. Peter said that he felt that the strength of the acid was not the only factor that
Discus	s the 1	actors that affect pH.
		[4] QWC [1]
(d)	Meth	anoic acid is a weak acid.
	(i)	Write the expression for the acid dissociation constant, $K_{\rm a}$, of methanoic acid. [1]
	(ii)	Using the information in <i>lines 16</i> and 17 of the article, calculate the pH of 0.10 mol dm ⁻³ methanoic acid. [3]
		pH =

e article (line 29) states that it is important to maintain the pH of shampoo within a small range.
at name is given to a system designed to maintain pH within a small range?
[1]
pH of a shampoo is maintained within a small range by using a weak acid, RCOOH, and its salt, RCOONa
n how this mixture maintains pH within a small range.
[3]
(Total 15)
leaves of the rhubarb plant are rich in ethanedioic acid (oxalic acid) which is a poisonous und. A solution containing ethanedioate ions can be formed by boiling rhubarb leaves with It can be separated and samples titrated against acidified potassium manganate(VII) to find incentration of the ethanedioate solution.
ggest how the ethanedioate solution could be separated from the rhubarb leaves.
ggest how the ethanedioate solution could be separated from the rhubarb leaves. [1]

The	ion-electron ha	lf-equation for	the oxidation of	ethanedioate ior	ns is given below	1.
	C	C ₂ O ₄ ²⁻ (aq) —	→ 2CO ₂ (g) + 2e ⁻		
(i)	Give the oxida	ation states for	carbon at the s	tart and end of th	nis reaction.	[1]
(ii)	Write an equa	tion for the read	ction of acidified	manganate(VII)	ions with ethaned	dioate [1]
ve a re	eason why an in	dicator is not ne	eeded in this titra	ation.		[1]
potas	ssium mangana	te(VII) solution e(VII) solution r	of concentration equired for comp	0.0200 moldm ⁻³ lete reaction are l	. The volumes of isted below.	
of KM	nO ₄ (ag)/cm ³	(S)	323	0.00	89	
					ioate solution. [4]	
Writ	e the expressi	on for the aci	d dissociation	constant, K _a , fo	r methanoic aci	d. [1]
					tion 0.2 mol dm	ı ⁻³ . [3]
	(i) (ii) ve a reference at ref	(i) Give the oxidations. (ii) Write an equations. Four samples of 25.1 potassium manganation potassium manganation of KMnO ₄ (aq)/cm ³ Use the information of the	C ₂ O ₄ ²⁻ (aq) — (i) Give the oxidation states for (ii) Write an equation for the reasons. Four samples of 25.00 cm ³ of the epotassium manganate(VII) solution potassium manganate(VII) solution potassium manganate(VII) solution role of KMnO ₄ (aq)/cm ³ 28.80 Use the information given to calculate ating ethanedioic acid in glycerol procession. The value of K_a for methanoic acid.	C ₂ O ₄ ²⁻ (aq) \longrightarrow 2CO ₂ (g (i) Give the oxidation states for carbon at the s (ii) Write an equation for the reaction of acidified ions. The value of K_a for methanoic acid is 1.8 × 10.10 carbon at the s (ii) Write the expression for the acid dissociation of the expression at the sequence of a carbon at the sequence of acidified ions. 2C ₂ O ₄ ²⁻ (aq) \longrightarrow 2CO ₂ (g (i) Give the oxidation states for carbon at the s (ii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation states for carbon at the s (iii) Write an equation for the ecid on a cidifical side of the sequence of the s	(i) Give the oxidation states for carbon at the start and end of the Write an equation for the reaction of acidified manganate (VII) ions. Four samples of 25.00 cm³ of the ethanedioate solution were titrated potassium manganate (VII) solution of concentration 0.0200 mol dm⁻³ potassium manganate (VII) solution required for complete reaction are I 1 2 3 of KMnO ₄ (aq)/cm³ 28.80 27.95 28.00 Use the information given to calculate the concentration of the ethaned ating ethanedioic acid in glycerol produces methanoic acid, HCOOH. Write the expression for the acid dissociation constant, K_a , for The value of K_a for methanoic acid is 1.8×10^{-4} mol dm⁻³.	(i) Give the oxidation states for carbon at the start and end of this reaction. (ii) Write an equation for the reaction of acidified manganate(VII) ions with ethanerions. ve a reason why an indicator is not needed in this titration. Four samples of 25.00 cm³ of the ethanedioate solution were titrated against acidified potassium manganate(VII) solution of concentration 0.0200 moldm⁻³. The volumes of potassium manganate(VII) solution required for complete reaction are listed below. 1 2 3 4 of KMnO₄(aq)/cm³ 28.80 27.95 28.00 27.80 Use the information given to calculate the concentration of the ethanedioate solution. [4] ating ethanedioic acid in glycerol produces methanoic acid, HCOOH. Write the expression for the acid dissociation constant, K₂, for methanoic acid.

	meant by a <i>buffer solution</i> and explain how a mixture of methanoic acid and sodium noate acts as a buffer.
	[3] QWC [1]
105 80	45 242048 No. 10 10 10 No. 10
(g)	Acidified potassium dichromate, K ₂ Cr ₂ O ₇ , is also an oxidising agent.
(i) Give	e the colour change that occurs when acidified potassium dichromate acts as an oxidising
	[1]
withou	en sodium hydroxide is added to a solution of potassium dichromate, a colour change occurs ta redox reaction occurring. Give the formula of the new chromium-containing ion and the of the solution formed.
withou	t a redox reaction occurring. Give the formula of the new chromium-containing ion and the
withou	t a redox reaction occurring. Give the formula of the new chromium-containing ion and the of the solution formed.
withou	t a redox reaction occurring. Give the formula of the new chromium-containing ion and the of the solution formed.
without colour	t a redox reaction occurring. Give the formula of the new chromium-containing ion and the of the solution formed. [2]
5. In 2 radioac	t a redox reaction occurring. Give the formula of the new chromium-containing ion and the of the solution formed. [2] (Total 20) Total a man was detained at Moscow Airport when he tried to smuggle samples containing a
5. In 2 radioad	t a redox reaction occurring. Give the formula of the new chromium-containing ion and the of the solution formed. [2] (Total 20) O11 a man was detained at Moscow Airport when he tried to smuggle samples containing a ctive isotope of sodium, ²² Na, onto an aircraft.

(ii)	22 Na decays by the loss of a positron. This may occur by the breakdown of a proton into a neutron and a positron, giving the product, bX .
	Deduce the mass number (b) and the chemical symbol (X) of this product. [2]
	b
	X
iii) The	half-life of the isotope ²² Na is 2.6 years. The mass of a sample of this isotope is 48 mg.
Calcula	te the time taken for the mass of ²² Na to fall to 3 mg
	[1]
	<i>Time taken</i> =years
	visible emission spectrum of sodium shows a strong yellow-orange line at a wavelength of and a weaker green line at 569 nm.
Comple	ete the sentences below by using the words higher or lower as appropriate.
of t	e frequency of the green line at 569 nm isthan the frequency the yellow-orange line at 589 nm. Another line is seen at 424 nm. This is caused by an ctronic transition ofenergy than the line at 569 nm.

(c)	Trona is a naturally-occurring 'sodium carbonate' mineral. It has the formula Na ₂ CO ₃ .NaHCO ₃ .2H ₂ O.			
	(i)	Show that the relative molecular mass of trona is 226. [1]		
	(ii)	On heating, trona loses water and carbon dioxide giving sodium carbonate.		
		$2[Na_2CO_3.NaHCO_3.2H_2O](s) \longrightarrow 3Na_2CO_3(s) + CO_2(g) + 5H_2O(1)$		
		Calculate the atom economy of this reaction, assuming that sodium carbonate is the only required product.		
		Atom economy =		
	(iii)	The above reaction is used commercially to obtain sodium carbonate.		
		Suggest one environmental disadvantage of this reaction as indicated by the equation, and state what could be done to overcome this problem. [2]		

(d)	When sodium carbonate is added to water, some of the carbonate ions react with the water to give an alkaline solution.
	$CO_3^{2-}(aq) + H_2O(1) \implies HCO_3^{-}(aq) + OH^{-}(aq)$
	(i) Explain why this reaction is considered to be an acid-base reaction. [2]
	(ii) The pH of a sodium carbonate solution is 11.4. How would you explain the meaning of the pH scale to a member of the public
	[3
	Total [15]
	Total [15]